# 消除冗余

我们认识到,不对视频进行压缩是不行的;一个单独的一小时长的视频,分辨率为 720p 和 30fps 时将需要 278GB*。仅仅使用无损数据压缩算法——如 DEFLATE(被 PKZIP, Gzip, 和 PNG 使用)——也无法充分减少视频所需的带宽,我们需要找到其它压缩视频的方法。

1280 x 720 x 24 x 30 x 3600 (宽,高,每像素比特数,fps 和秒数)

为此,我们可以利用视觉特性:和区分颜色相比,我们区分亮度要更加敏锐。时间上的重复:一段视频包含很多只有一点小小改变的图像。图像内的重复:每一帧也包含很多颜色相同或相似的区域。

# 视觉特性

# 颜色,亮度和我们的眼睛

我们的眼睛对亮度比对颜色更敏感 (opens new window),你可以看看下面的图片自己测试。

luminance vs color

如果你看不出左图的方块 A 和方块 B 的颜色是相同的,那么好,是我们的大脑玩了一个小把戏,这让我们更多的去注意光与暗,而不是颜色。右边这里有一个使用同样颜色的连接器,那么我们(的大脑)就能轻易分辨出事实,它们是同样的颜色。

# 简单解释我们的眼睛工作的原理

眼睛是一个复杂的器官 (opens new window),有许多部分组成,但我们最感兴趣的是视锥细胞和视杆细胞。眼睛有大约 1.2 亿个视杆细胞和 6 百万个视锥细胞 (opens new window)

简单来说,让我们把颜色和亮度放在眼睛的功能部位上。视杆细胞 (opens new window)主要负责亮度,而视锥细胞 (opens new window)负责颜色,有三种类型的视锥,每个都有不同的颜料,叫做:S-视锥(蓝色),M-视锥(绿色)和 L-视锥(红色) (opens new window)

既然我们的视杆细胞(亮度)比视锥细胞多很多,一个合理的推断是相比颜色,我们有更好的能力去区分黑暗和光亮。

eyes composition

一旦我们知道我们对亮度(图像中的亮度)更敏感,我们就可以利用它。

# 颜色模型 RGB 和 YUV

我们最开始学习的彩色图像的原理使用的是 RGB 模型,但也有其他模型。有一种模型将亮度(光亮)和色度(颜色)分离开,它被称为 YCbCr*

有很多种模型做同样的分离。

这个颜色模型使用 Y 来表示亮度,还有两种颜色通道:Cb(蓝色色度) 和 Cr(红色色度)。YCbCr 可以由 RGB 转换得来,也可以转换回 RGB。使用这个模型我们可以创建拥有完整色彩的图像,如下图。

ycbcr 例子

# YCbCr 和 RGB 之间的转换

有人可能会问,在 不使用绿色(色度) 的情况下,我们如何表现出所有的色彩?

为了回答这个问题,我们将介绍从 RGB 到 YCbCr 的转换。我们将使用 ITU-R 小组 (opens new window)*建议的标准 BT.601 (opens new window) 中的系数。

第一步是计算亮度,我们将使用 ITU 建议的常量,并替换 RGB 值。

Y = 0.299R + 0.587G + 0.114B

一旦我们有了亮度后,我们就可以拆分颜色(蓝色色度和红色色度):

Cb = 0.564(B - Y)
Cr = 0.713(R - Y)

并且我们也可以使用 YCbCr 转换回来,甚至得到绿色。

R = Y + 1.402Cr
B = Y + 1.772Cb
G = Y - 0.344Cb - 0.714Cr

组织和标准在数字视频领域中很常见,它们通常定义什么是标准,例如,什么是 4K?我们应该使用什么帧率?分辨率?颜色模型? (opens new window)

通常,显示屏(监视器,电视机,屏幕等等)仅使用 RGB 模型,并以不同的方式来组织,看看下面这些放大效果:

pixel geometry

# 色度子采样

一旦我们能从图像中分离出亮度和色度,我们就可以利用人类视觉系统对亮度比色度更敏感的特点,选择性地剔除信息。色度子采样是一种编码图像时,使色度分辨率低于亮度的技术。

ycbcr 子采样分辨率

我们应该减少多少色度分辨率呢?已经有一些模式定义了如何处理分辨率和合并(最终的颜色 = Y + Cb + Cr)。

这些模式称为子采样系统,并被表示为 3 部分的比率 - a:x:y,其定义了色度平面的分辨率,与亮度平面上的、分辨率为 a x 2 的小块之间的关系。

  • a 是水平采样参考 (通常是 4),
  • x 是第一行的色度样本数(相对于 a 的水平分辨率),
  • y 是第二行的色度样本数。

存在的一个例外是 4:1:0,其在每个亮度平面分辨率为 4 x 4 的块内提供一个色度样本。

现代编解码器中使用的常用方案是: 4:4:4 (没有子采样), 4:2:2, 4:1:1, 4:2:0, 4:1:0 and 3:1:1。

YCbCr 4:2:0 合并

这是使用 YCbCr 4:2:0 合并的一个图像的一块,注意我们每像素只花费 12bit。

YCbCr 4:2:0 合并

下图是同一张图片使用几种主要的色度子采样技术进行编码,第一行图像是最终的 YCbCr,而最后一行图像展示了色度的分辨率。这么小的损失确实是一个伟大的胜利。

色度子采样例子

前面我们计算过我们需要 278GB 去存储一个一小时长,分辨率在 720p 和 30fps 的视频文件。如果我们使用 YCbCr 4:2:0 我们能减少一半的大小(139GB)*,但仍然不够理想。

我们通过将宽、高、颜色深度和 fps 相乘得出这个值。前面我们需要 24 bit,现在我们只需要 12 bit。

# 自己动手:检查 YCbCr 直方图

你可以使用 ffmpeg 检查 YCbCr 直方图 (opens new window)。这个场景有更多的蓝色贡献,由直方图 (opens new window)显示。

./s/ffmpeg \
-i /files/v/small_bunny_1080p_30fps.mp4  \
-vf "split=2[a][b],[b]histogram,format=yuv420p[hh],[a][hh]overlay" \
/files/v/small_bunny_yuv_histogram.mp4

# 颜色, 亮度, 视频亮度, 伽马 视频回顾

观看这段精彩的视频,它解释什么是亮度并了解视频亮度、伽马和颜色。

# 自己动手: 检查 YCbCr 强度

你可以使用FFmpeg's oscilloscope 滤镜 (opens new window)可视化给定视频行的 Y 强度.

ffplay -f lavfi \
-i 'testsrc2=size=1280x720:rate=30000/1001,format=yuv420p' \
-vf oscilloscope=x=0.5:y=200/720:s=1:c=1

y 颜色示波器

# 帧类型 I/P/B

现在我们进一步消除时间冗余,但在这之前让我们来确定一些基本术语。假设我们一段 30fps 的影片,这是最开始的 4 帧。

球 1 球 2 球 3 球 4

我们可以在帧内看到很多重复内容,如蓝色背景,从 0 帧到第 3 帧它都没有变化。为了解决这个问题,我们可以将它们抽象地分类为三种类型的帧。

# I 帧(帧内,关键帧)

I 帧(可参考,关键帧,帧内编码)是一个自足的帧。它不依靠任何东西来渲染,I 帧与静态图片相似。第一帧通常是 I 帧,但我们将看到 I 帧被定期插入其它类型的帧之间。

球 1

# P 帧(预测)

P 帧利用了一个事实:当前的画面几乎总能使用之前的一帧进行渲染。例如,在第二帧,唯一的改变是球向前移动了。仅仅使用(第二帧)对前一帧的引用和差值,我们就能重建前一帧。

球 1 <- 球 2

# 自己动手:具有单个 I 帧的视频

既然 P 帧使用较少的数据,为什么我们不能用单个 I 帧和其余的 P 帧 (opens new window)来编码整个视频?

Generates a video with a single I frame and the rest are P frames.

./s/ffmpeg \
-i /files/v/small_bunny_1080p_30fps.mp4 \
-c:v libx264 -x264-params keyint=30:min-keyint=30:no-scenecut=1 \
-c:a copy \
/files/v/small_bunny_1080p_30fps_h264_keyframe_each_one_second.mp4

编码完这个视频之后,开始观看它,并快进到视频的末尾部分,你会注意到它需要花一些时间才真正跳转到这部分。这是因为 P 帧需要一个引用帧(比如 I 帧)才能渲染。

你可以做的另一个快速试验,是使用单个 I 帧编码视频,然后再次编码且每 2 秒插入一个 I 帧 (opens new window),并比较成品的大小

# B 帧(双向预测)

如何引用前面和后面的帧去做更好的压缩?!简单地说 B 帧就是这么做的。

球 1 <- 球 2 -> 球 3

# 自己动手:使用 B 帧比较视频

你可以生成两个版本,一个使用 B 帧,另一个全部不使用 B 帧 (opens new window),然后查看文件的大小以及画质。

Generates a video with 0 B-frames.

./s/ffmpeg \
-i /files/v/small_bunny_1080p_30fps.mp4 \
-c:v libx264 -x264-params keyint=30:min-keyint=30:no-scenecut=1:bframes=0 \
-c:a copy \
/files/v/small_bunny_1080p_30fps_zero_b_frames.mp4

# 小结

这些帧类型用于提供更好的压缩率,我们将在下一章看到这是如何发生的。现在,我们可以想到 I 帧是昂贵的,P 帧是便宜的,最便宜的是 B 帧。

帧类型例子

# 时间冗余(帧间预测)

让我们探究去除时间上的重复,去除这一类冗余的技术就是帧间预测

我们将尝试花费较少的数据量去编码在时间上连续的 0 号帧和 1 号帧。

原始帧

我们可以做个减法,我们简单地用 0 号帧减去 1 号帧,得到残差,这样我们就只需要对残差进行编码

残差帧

但我们有一个更好的方法来节省数据量。首先,我们将0 号帧 视为一个个分块的集合,然后我们将尝试将 帧 1帧 0 上的块相匹配。我们可以将这看作是运动预测

# 维基百科—块运动补偿

“运动补偿是一种描述相邻帧(相邻在这里表示在编码关系上相邻,在播放顺序上两帧未必相邻)差别的方法,具体来说是描述前面一帧(相邻在这里表示在编码关系上的前面,在播放顺序上未必在当前帧前面)的每个小块怎样移动到当前帧中的某个位置去。”

![原始帧运动预测](Generates a video with a single I frame and the rest are P frames./i/original_frames_motion_estimation.png "原始帧运动预测")

我们预计那个球会从 x=0, y=25 移动到 x=6, y=26xy 的值就是运动向量进一步节省数据量的方法是,只编码这两者运动向量的差。所以,最终运动向量就是 x=6 (6-0), y=1 (26-25)

实际情况下,这个球会被切成 n 个分区,但处理过程是相同的。

帧上的物体以三维方式移动,当球移动到背景时会变小。当我们尝试寻找匹配的块,找不到完美匹配的块是正常的。这是一张运动预测与实际值相叠加的图片。

运动预测

但我们能看到当我们使用运动预测时,编码的数据量少于使用简单的残差帧技术。

运动预测 vs 残差

# 自己动手:查看运动向量

我们可以使用 ffmpeg 生成包含帧间预测(运动向量)的视频 (opens new window)

# It generates a video with motion vector over the video.
./s/ffmpeg \
-flags2 +export_mvs \
-i /files/v/small_bunny_1080p_30fps.mp4 \
-vf codecview=mv=pf+bf+bb \
/files/v/small_bunny_1080p_30fps_vis_mv.mp4

# 空间冗余(帧内预测)

如果我们分析一个视频里的每一帧,我们会看到有许多区域是相互关联的

空间内重复

让我们举一个例子。这个场景大部分由蓝色和白色组成。

smw 背景

这是一个 I 帧,我们不能使用前面的帧来预测,但我们仍然可以压缩它。我们将编码我们选择的那块红色区域。如果我们看看它的周围,我们可以估计它周围颜色的变化

smw 背景块

我们预测:帧中的颜色在垂直方向上保持一致,这意味着未知像素的颜色与临近的像素相同

smw 背景预测

我们的预测会出错,所以我们需要先利用这项技术(帧内预测),然后减去实际值,算出残差,得出的矩阵比原始数据更容易压缩。

smw 残差

# 自己动手:查看帧内预测

你可以使用 ffmpeg 生成包含宏块及预测的视频 (opens new window)

# It generates a video with macro blocks debug over the video. Please refer to
./s/ffmpeg \
-debug vis_mb_type \
-i /files/v/small_bunny_1080p_30fps.mp4 \
/files/v/small_bunny_1080p_30fps_vis_mb.mp4

请查看 ffmpeg 文档以了解每个块颜色的含义 (opens new window)